MORTALITY DATA FOR THE UNITED STATES MORTALITY DATABASE (USMDB)¹

By Magali Barbieri and Celeste Winant

GENERAL

National censuses and population estimates for the United States are produced by the U.S. Department of Commerce at the US Census Bureau (www.census.gov). Vital statistics data are collected and disseminated by the National Center for Health Statistics (NCHS), which is part of the Centers for Disease Control (CDC) (www.cdc.gov/nchs/). Though information on burials was collected routinely in some areas of the United States in the 19th century, it is only in 1933 that the quality of the information collected was deemed good enough (with over 90% of vital events registered) in all of the States and the District of Columbia for the system to cover the whole territory of the United States (National Research Council, 2009). The present format of US death certificates was established in the 1940s and follows the recommended international standards. It has been revised periodically to reflect medical progress and changing public health concerns (Rosenberg, 1999). The last notable revision was implemented in 2003.

Sources of Data

The USMDB population data originate from population censuses conducted every 10 years. The USMDB makes use of the censuses conducted from 1960 to 2010. Census counts serve as the basis for producing annual July 1st population estimates for intercensal and postcensal periods, published by the Census Bureau. Postcensal population estimates are revised every year and intercensal population estimates are substituted to postcensal estimates as new census data become available. Intercensal population estimates are available at the state level for all years since 1970. They have been published on the Census Bureau website (U.S. Census Bureau, Population Estimates Program, https://www.census.gov/programs-surveys/popest.html). Additional (sometimes more detailed) census data are available through the Inter-University Consortium for Political and Social Science Research (ICPSR, www.icpsr.umich.edu) with restricted access for participating organizations. For years between 1959 and 1969, we constructed our own annual intercensal population estimates using census data and birth and death counts by age during the intercensal period. To construct these estimates, we followed strictly the methods of the Human Mortality Database Version 5 (Wilmoth et al., 2007).

Starting with 1959, data on deaths are available electronically from the National Center for Health Statistics (NCHS) in the form of Mortality Multiple Cause of Death Files (see National Center for Health Statistics, 1959–). These data include individual

¹ This document partly relies on the information included in the Human Mortality Database Background and Documentation File for the United States (http://www.mortality.org/hmd/USA/InputDB/USAcom.pdf),
death records coded from death certificates. Public files are available on the NCHS website, at https://www.cdc.gov/nchs/data_access/vitalstatsonline.htm. However, geographic information (including state of residence and state of occurrence) has been suppressed from the public files for years since 2004 to protect confidentiality. Access to the restricted data is only possible through special arrangement. The USMDB has obtained access to these data through the Berkeley Research Data Center after completing a strict vetting procedure. All of the USMDB mortality data processing has taken place within the RDC (including for years prior to 2004 because more detailed information on the date of birth is available in the restricted files, which allow for a more accurate allocation of deaths to the upper or lower Lexis triangle for each combination of age and year of death).

TERRITORIAL COVERAGE

In this document, the term "United States" or "US", when used without qualification, refers to the territory of the United States as defined by the Census Bureau. The US consists of the 50 states and the District of Columbia. Since 1959, when both Alaska and Hawaii became US states, national statistics has been publishing information for all 50 states and the District of Columbia. There has been no change to state boundaries since then.

DEATH COUNT DATA

Coverage and Completeness

In the early years of the 20th century, vital statistics for the United States were based on data from those states admitted to the Death Registration Area, the number of which increased over time. To be included in the Death Registration Area, the vital statistics system for a state had to demonstrate coverage of at least 90% of the state population. This process was completed in 1933 for the US as a whole with the admission of Texas into the Death Registration Area. Given the legal requirements for death registration, mortality data for the United States are considered to be complete and of acceptable quality since 1933.

Mortality data for the United States are confined to events registered within the territory of the United States. Vital events to US residents occurring outside of the United States are not included but those to non-US resident occurring within the United States are. Since 1970, it is possible to identify deaths of non-residents and, consequently, to exclude them from tabulations. Therefore, for the years 1959–1969, deaths in the USMDB include both residents and nonresidents (i.e., the de facto population), and for the period starting in 1970, only residents are included.

Specific Details

Deriving Death Counts by Lexis triangles from Individual Death Records

Death counts for years since 1989 can be precisely tabulated by Lexis triangle (i.e., by age and birth cohort) because the original data from NCHS include the exact date of birth as well as the exact date of death.

For prior years, the original data identify deaths by single year of age, but not by
birth cohort (because the date of birth is not included on the death records). It is possible to estimate deaths by Lexis triangle using the exact date of death, although this approximation (and the resulting mortality estimate) is unlikely to be as accurate as the observed counts for years in which the date of birth is available. Procedures used to derive the death counts by Lexis triangle for years prior to 1989 are described in Appendix 2.

POPULATION COUNT DATA

Coverage and Completeness

Data on population refer to the resident population of the United States. No adjustments have been made to the published population estimates.

Specific Details

Because the Census Bureau annual state-level population estimates by sex and age are only available for years since 1970, we have constructed our own intercensal estimates using a cohort component method described in the 2007 Human Mortality Database Methods Protocol (http://v5.mortality.org/Public/Docs/MethodsProtocol.pdf) for the years 1959-1969. Further details are provided in Appendix 3.

BIRTH COUNT DATA

Coverage and Completeness

As for the mortality statistics, due to the legal requirements of birth registration, data on births are considered to be virtually complete and of a good quality since 1933. Birth data for the United States are confined to events registered in the United States. Births to legal residents of the U.S. that occurred in other parts of the world are excluded from published vital statistics. Prior to 1970, births to non-residents (that occurred in the US) were included in the statistics, whereas for 1970 and thereafter, births to non-residents are excluded.

Specific Details

The distribution of births by sex at the state level was missing from the NCHS files for the year 1967. In the USMDB, we thus used the state-specific average of the sex ratio in the two surrounding years, i.e. 1966 and 1968, to split the births by sex within each state.

ACKNOWLEDGEMENTS

We are grateful to Elizabeth Arias and Robert Anderson at NCHS for their collaboration to this project. We also wish to acknowledge John Wilmoth, current Director of the Population Division at the United Nations, and former PI for this project, who developed the initial idea for the USMD. We also recognize the contributions of Kirill Andreev and of Ludmila Andreeva to the early stages of the USMDB. And of course, this project would not have been possible without prior experience with the Human Mortality
Database (HMD), including all the work carried out by both the DataLab team at the Max Planck Institute for Demographic Research and in the Department of Demography at the University of California, Berkeley, to develop the HMD Methods Protocol, of which we have made extensive use in the USMDB.

Financial and logistical support was received from the USMDB two sponsoring institutions, the Department of Demography at the University of California, Berkeley (UCB) and the NIA-funded Center on the Economics and Demography of Aging at UCB (CEDA). The project has been initially funded by a grant (R01 AG040245) awarded to John Wilmoth by the National Institute on Aging (NIA). Additional technical and research support has been provided by the French Institute for Demographic Studies (INED). Additional financial support has been provided to the project on an annual basis since 2016 by the Society of Actuaries as well as through occasional gifts to the Human Mortality Database from the following sponsors: the AXA Research Fund, SCOR, Hannover-Re, Milliman-France and Reinsurance Group of America (RGA). None of the funders had any role in the data collection, analysis, preparation, review or approval of the final data series.

REFERENCES

National Center for Health Statistics. (1959–). Mortality Detail Files.

National Center for Health Statistics. (1968–). Multiple Causes of Death Files.

APPENDIX 1: DESCRIPTION OF USMDB INPUT DATA

DEATHS

<table>
<thead>
<tr>
<th>Period</th>
<th>Type of Data</th>
<th>Age groups</th>
<th>Comments</th>
<th>RefCode(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1959-2017</td>
<td>Annual death counts for U.S. residents by geographic area, sex, single year of age and date of death (in months)</td>
<td>0, 1,...maximum age attained</td>
<td>Deaths to U.S. residents occurring in outlying territories (e.g., Puerto Rico, U.S. Virgin Islands) or a foreign country (including Canada) are excluded, as are deaths to non-residents for years since 1970. Deaths have been tabulated from individual records.†</td>
<td>1</td>
</tr>
</tbody>
</table>

† For details, see Appendix 2.

2 The reference codes indicated in the last column of each of the tables below correspond to the sources listed in Appendix 4.
POPULATION

<table>
<thead>
<tr>
<th>Period</th>
<th>Type of Data</th>
<th>Age groups</th>
<th>Comments</th>
<th>RefCode(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1960</td>
<td>Official Census estimates</td>
<td>0, 1, ..., 84, 85-89,90-94,95-99,100+</td>
<td>Error! Reference source not found.</td>
<td>10, 11, 12</td>
</tr>
<tr>
<td>1970</td>
<td>Official Census estimates</td>
<td>0, 1, ..., 84, 85-89,90-94,95-99,100+</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>1971–1979</td>
<td>Intercensal population estimates for the resident population</td>
<td>0-4, 5-9, ..., 80-84, 85+</td>
<td></td>
<td>60</td>
</tr>
<tr>
<td>1980</td>
<td>Official Census estimates</td>
<td>0, 1, ..., 89, 90-94, 95-99,100+</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>1981–1989</td>
<td>Intercensal population estimates for the resident population†</td>
<td>0, 1 ... 85+</td>
<td></td>
<td>70</td>
</tr>
<tr>
<td>1990–1999</td>
<td>Intercensal population estimates for the resident population‡‡</td>
<td>0, 1 ... 85+</td>
<td></td>
<td>80</td>
</tr>
<tr>
<td>2000</td>
<td>Official Census estimates‡</td>
<td>0, 1, ..., 99, 100-104, 105-109, 110+</td>
<td></td>
<td>22</td>
</tr>
<tr>
<td>2001–2009</td>
<td>Intercensal population estimates for the resident population†</td>
<td>0, 1 ... 85+</td>
<td></td>
<td>90</td>
</tr>
<tr>
<td>2010</td>
<td>Official Census estimates‡</td>
<td>0, 1, ..., 99, 100-104, 105-109, 110+</td>
<td></td>
<td>23</td>
</tr>
<tr>
<td>2011-2018</td>
<td>Intercensal population estimates for the resident population†</td>
<td>0, 1 ... 85+</td>
<td></td>
<td>130</td>
</tr>
</tbody>
</table>

† For details, see Appendix 3.
‡‡ Data are available on the Census Bureau web site (http://www.census.gov). For the specific URLs and download dates, see the reference file for the raw data.
‡ Official intercensal estimates are used for 1990 because of known issues in age-reporting with official 1990 Census estimates.
BIRTHS

<table>
<thead>
<tr>
<th>Period</th>
<th>Type of Data</th>
<th>Comments</th>
<th>RefCode(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1959–1964</td>
<td>Annual births for the de facto population by sex</td>
<td>Counts for 1959 have been adjusted to include births that occurred in Hawaii (see section “Births Count Data”). No sex detail for year 1967 (see the Specific Details in the “Birth count data” section above for imputation method).</td>
<td>200</td>
</tr>
<tr>
<td>1965–1979</td>
<td>Annual births for the de facto population by sex</td>
<td></td>
<td>210</td>
</tr>
<tr>
<td>1980–2003</td>
<td>Annual births for the resident population by sex</td>
<td>Births to U.S. residents that occurred abroad are excluded as are births to non-residents.</td>
<td>220</td>
</tr>
<tr>
<td>2003–2006</td>
<td>Annual births for the resident population by sex</td>
<td>Births to U.S. residents that occurred abroad are excluded as are births to non-residents.</td>
<td>230</td>
</tr>
<tr>
<td>2007–2017</td>
<td>Annual births for the resident population by sex</td>
<td>Births to U.S. residents that occurred abroad are excluded as are births to non-residents.</td>
<td>240</td>
</tr>
</tbody>
</table>
Appendix 2:
Tabulation of Deaths from the Mortality Detailed Files by Lexis triangle

The information required to precisely and accurately allocate each death to either the upper or the lower Lexis triangle within each combination of single year of age and calendar year is the birth cohort. This combination of information is available for all years since 1989 in the restricted mortality files to which we have access but information on the date of birth is not available for years 1959-1988. In some instances, there are inconsistencies between the date of birth, the date of death, and the age at death (Appendix Table 1). In addition, some of the information is missing for a small number of records, though the number and proportion of problematic records (with either inconsistencies or missing information) has always been marginal (representing less than 0.5% of all records in 1989) and has been declining consistently over time (representing less than 0.05% of all records for years since 2013). For those records with inconsistencies between the age at death, the date of birth and the date of death, we decided to ignore age and only rely on the dates of birth and death, except for those records when the age at death was below one. This is because in such cases, the information provided is extremely detailed (down to the number of minutes lived) which makes it less likely than a coding error would have occurred.

WHEN THE BIRTH COHORT IS UNKNOWN

For years of data (1959-1988) when we lack information about the date of birth (and thus about the cohort to which the deceased belonged), we indirectly estimated the Lexis triangle to which deaths should be allocated. As noted earlier, the age variable identifies the age of the decedent at his/her last birthday in single years. The month of death is provided as well as, for several years (1962-1967 and since 1972), the exact date of death. This information was used in the USMDB to allocate the death counts to each Lexis triangle as further explained below.
Table 1. Number of death records with inconsistent or missing information, 1989-2017

<table>
<thead>
<tr>
<th>Year</th>
<th>All dates/age complete and consistent</th>
<th>Inconsistencies between the age and dates of birth/death</th>
<th>Missing age only</th>
<th>Missing date of birth only</th>
<th>Missing age and date of birth</th>
<th>All incomplete or inconsistent records</th>
<th>In proportion to total records (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1989</td>
<td>2150466</td>
<td>6472</td>
<td>45</td>
<td>3183</td>
<td>517</td>
<td>10217</td>
<td>0.48</td>
</tr>
<tr>
<td>1990</td>
<td>2148463</td>
<td>6023</td>
<td>45</td>
<td>2949</td>
<td>517</td>
<td>9534</td>
<td>0.44</td>
</tr>
<tr>
<td>1991</td>
<td>2169518</td>
<td>5920</td>
<td>29</td>
<td>2476</td>
<td>547</td>
<td>8972</td>
<td>0.41</td>
</tr>
<tr>
<td>1992</td>
<td>2175613</td>
<td>5120</td>
<td>7</td>
<td>1963</td>
<td>467</td>
<td>7557</td>
<td>0.35</td>
</tr>
<tr>
<td>1993</td>
<td>2268553</td>
<td>4891</td>
<td>25</td>
<td>1883</td>
<td>482</td>
<td>7281</td>
<td>0.32</td>
</tr>
<tr>
<td>1994</td>
<td>2278994</td>
<td>4181</td>
<td>29</td>
<td>1578</td>
<td>385</td>
<td>6173</td>
<td>0.27</td>
</tr>
<tr>
<td>1995</td>
<td>2312132</td>
<td>3520</td>
<td>36</td>
<td>1646</td>
<td>427</td>
<td>5629</td>
<td>0.24</td>
</tr>
<tr>
<td>1996</td>
<td>2314690</td>
<td>3584</td>
<td>25</td>
<td>1603</td>
<td>498</td>
<td>5710</td>
<td>0.25</td>
</tr>
<tr>
<td>1997</td>
<td>2314245</td>
<td>3355</td>
<td>17</td>
<td>1697</td>
<td>384</td>
<td>5453</td>
<td>0.24</td>
</tr>
<tr>
<td>1998</td>
<td>2337256</td>
<td>2980</td>
<td>2</td>
<td>1400</td>
<td>409</td>
<td>5086</td>
<td>0.22</td>
</tr>
<tr>
<td>1999</td>
<td>2391399</td>
<td>2027</td>
<td>3</td>
<td>1077</td>
<td>348</td>
<td>4413</td>
<td>0.18</td>
</tr>
<tr>
<td>2000</td>
<td>2403351</td>
<td>2108</td>
<td>2</td>
<td>868</td>
<td>354</td>
<td>3332</td>
<td>0.14</td>
</tr>
<tr>
<td>2001</td>
<td>2416425</td>
<td>2286</td>
<td>4</td>
<td>955</td>
<td>418</td>
<td>3663</td>
<td>0.15</td>
</tr>
<tr>
<td>2002</td>
<td>2443387</td>
<td>2616</td>
<td>2</td>
<td>939</td>
<td>355</td>
<td>3912</td>
<td>0.16</td>
</tr>
<tr>
<td>2003</td>
<td>2448288</td>
<td>2380</td>
<td>2</td>
<td>850</td>
<td>340</td>
<td>3572</td>
<td>0.15</td>
</tr>
<tr>
<td>2004</td>
<td>2397615</td>
<td>2027</td>
<td>3</td>
<td>614</td>
<td>343</td>
<td>2987</td>
<td>0.12</td>
</tr>
<tr>
<td>2005</td>
<td>2448017</td>
<td>2099</td>
<td>8</td>
<td>487</td>
<td>247</td>
<td>2841</td>
<td>0.12</td>
</tr>
<tr>
<td>2006</td>
<td>2426264</td>
<td>1779</td>
<td>1</td>
<td>524</td>
<td>219</td>
<td>2523</td>
<td>0.10</td>
</tr>
<tr>
<td>2007</td>
<td>2423712</td>
<td>1931</td>
<td>8</td>
<td>326</td>
<td>193</td>
<td>2458</td>
<td>0.10</td>
</tr>
<tr>
<td>2008</td>
<td>2471984</td>
<td>1675</td>
<td>0</td>
<td>217</td>
<td>147</td>
<td>2039</td>
<td>0.08</td>
</tr>
<tr>
<td>2009</td>
<td>2437163</td>
<td>1167</td>
<td>1</td>
<td>179</td>
<td>254</td>
<td>1601</td>
<td>0.07</td>
</tr>
<tr>
<td>2010</td>
<td>2648435</td>
<td>891</td>
<td>1</td>
<td>301</td>
<td>125</td>
<td>1318</td>
<td>0.05</td>
</tr>
<tr>
<td>2011</td>
<td>2515458</td>
<td>980</td>
<td>2</td>
<td>144</td>
<td>132</td>
<td>1258</td>
<td>0.05</td>
</tr>
<tr>
<td>2012</td>
<td>2543279</td>
<td>1208</td>
<td>0</td>
<td>170</td>
<td>147</td>
<td>1525</td>
<td>0.06</td>
</tr>
<tr>
<td>2013</td>
<td>2596993</td>
<td>798</td>
<td>0</td>
<td>137</td>
<td>132</td>
<td>1067</td>
<td>0.04</td>
</tr>
<tr>
<td>2014</td>
<td>2626418</td>
<td>661</td>
<td>0</td>
<td>164</td>
<td>163</td>
<td>988</td>
<td>0.04</td>
</tr>
<tr>
<td>2015</td>
<td>2712630</td>
<td>414</td>
<td>0</td>
<td>73</td>
<td>138</td>
<td>625</td>
<td>0.02</td>
</tr>
<tr>
<td>2016</td>
<td>2744248</td>
<td>345</td>
<td>0</td>
<td>52</td>
<td>137</td>
<td>534</td>
<td>0.02</td>
</tr>
<tr>
<td>2017</td>
<td>2813055</td>
<td>285</td>
<td>0</td>
<td>34</td>
<td>129</td>
<td>448</td>
<td>0.02</td>
</tr>
</tbody>
</table>

Figure 1 illustrates a 1x1 Lexis square (by age and year of death), divided into two Lexis triangles (by age, birth cohort, and year), each of which is further divided into 144 smaller Lexis triangles (by age in months, birth month, and month of death). Suppose that we know a death occurred between July and November (months 7-11) and between age \((x + 6\) months) and \((x + 8\) months) (shown by the red rectangle in Figure 1). The red rectangle includes 16 of the smaller Lexis triangles (by month), of which 15 belong to the lower Lexis triangle (by year) and one to the upper triangle. If we assume that the probability of dying is the same in each of the smaller Lexis triangles, then the
probability that such deaths occurred to someone from the older cohort is 1/16. Therefore, among all individual death records that fall within this red rectangle, we assign $1/16^{th}$ of such deaths to the upper triangle and $15/16^{th}$ to lower triangle. This simple example captures the gist of the method.

Figure 1. 1x1 Lexis Square by age (in months) and month/year of death

![Lexis rectangle, 1x1](image)

WHEN ONLY THE MONTH OF DEATH IS AVAILABLE

For some years (1959–1961 and 1968–1971), only the month and year of death are included in the MDF (not the day of death or the date of birth). Therefore, within a given 1x1 Lexis square (age by calendar year), we can further split the deaths into 12 rectangles representing the month of death (age by month/year of death), as shown on Figure 2. The proportion of deaths falling within the upper and lower triangles of each rectangle can be computed assuming a uniform distribution of deaths. For example, for deaths occurring in December of year t (shown in yellow on Figure 2), $23/24^{th}$ would fall into the lower triangle and $1/24^{th}$ in the upper triangle.
EXACT DEATH OF DEATH AVAILABLE

For some other years (1962-1967 and 1972-1988), the files include complete information for the date of death but the date of birth is not available. Therefore, a procedure similar to that described in the previous section can be applied. That is, deaths within each 1x1 Lexis square can be split into 365 rectangles representing each possible day of death. Again assuming that deaths are distributed uniformly within each of these rectangles, the proportion of deaths falling within the upper and lower triangles can be computed.

WHEN THE EXACT DATES OF BIRTH AND DEATH ARE AVAILABLE

For years since 1989, the exact dates of birth and death (day, month and year) are available in the data files. Thus, it is possible to identify precisely whether the death occurred in the upper triangle or whether it occurred in the lower triangle, without making any assumption.
APPENDIX 3:
Population estimates for 1959-1969

One of the guiding principles of this database is to provide mortality estimates with as much age detail as possible. U.S. data on deaths by single year of age are available starting with 1959. To compute death rates by single year of age, they must be combined with population counts by single year of age, i.e., annual population estimates by state. Such data are not available from the U.S. Census Bureau for years before 1960. We thus had to calculate our own inter-censal estimates for 1959 using the classic demographic approach of a cohort component method. The 1959 estimates by back projecting the 1960 population estimates using the death counts by age within each cohort as well as the birth count for 1959.

In addition, for years 1960-1969, we identified two sets of annual population estimates available from the Census Bureau. A first set of estimates was available by single year of age but yielded figures which were inconsistent with both the 1970 Census counts and the Census count and estimates for 1980 and beyond. A second set was available by five-year age group and highly consistent with prior and succeeding years. We thus decided to use this second set of estimates but redistributed the five-age group deaths to each single year of age using the proportional distribution from the first set of estimates.
APPENDIX 4:
Detailed sources of the data used for the USMDB and corresponding RefCodes (see Appendix 1)

RefCode 1
National Center for Health Statistics, United States. Mortality Multiple Cause Restricted Use File, Accessed in the Berkeley RDC 29-Jan-2019
Tabulation of deaths by Lexis triangle from individual records by state, single year of age and birth cohort (where available) for years 1959 - 2017.

RefCode 10
Hybrid series of population data for USA states years 1960 by 1 year age, computed from combined series RefCode 11 and RefCode 12. The primary sources used to construct the hybrid series are:
(Census) Population Data for USA states years 1960, by 5 year age (RefCode 11)
(Census) Population Data for USA states, years 1960 (RefCode 12)

RefCode 11
Census of Population: 1960 (Volume I)
U.S. Department of Commerce Bureau of the Census (1961)
Characteristics of the Population
General Population Characteristics
Table 94. Single year of Age by color, nativity, and sex, for the state: 1960

RefCode 12
Census of Population: 1960
Department of Commerce
Characteristics of the Population
General Population Characteristics, USA Summery
Table 59. Age by color, sex, for the state: 1960
(retrieved from https://www.census.gov/prod/www/decennial.html on 5-May-2015)

RefCode 2
Census of Population on
U.S. Department of Commerce Bureau of the Census (1972)
Characteristics of the Population
General Population Characteristics
Table 19. Single year of Age by Race and Sex: 1970
(retrieved from https://www.census.gov/prod/www/decennial.html on 1-Dec-2014)

RefCode 60
Ann Arbor, MI: Inter-university Consortium for Political and Social Research [distributor], 1992-02-16. https://doi.org/10.3886/ICPSR08384.v1

RefCode 3
Census of Population on
U.S. Department of Commerce Bureau of the Census
Characteristics of the Population
General Population Characteristics
Table 18. Single year of Age by Race, Spanish Origin, Sex: 1980

RefCode 70
U.S. Department of Commerce Bureau of the Census
State Population Estimates and Demographic Components of Change: 1981 to 1989, by Age, Sex, Race, and Hispanic Origin
(retrieved from https://www.census.gov/data/datasets/time-series/demo/popest/1980s-state.html)

RefCode 21
U.S. Department of Commerce Bureau of the Census
Report Number: CP-1 (Volumes 1990 CP-1-2 to 1990 CP-1-52)
1990 Census of Population: Characteristics of the Population
General Population Characteristics
Table 18. Single year of Age by Race, Spanish Origin, Sex: 1990

RefCode 80
Center for Disease Control and Prevention
National Center for Health Statistics
National Vital Statistics System
Bridged-race intercensal population estimates for July 1, 1990-July 1, 1999
(retrieved from https://www.cdc.gov/nchs/nvss/bridged_race/data_documentation.htm)

RefCode 22
U.S. Department of Commerce Bureau of the Census
Program: Decennial Census – Census United States
Data Set: Census 2000 Summary File 1 (SF 1) 100-Percent Data
Table: PCT012 Sex by age [Total population]
(retrieved from https://factfinder.census.gov)

RefCode 90
Center for Disease Control and Prevention
National Center for Health Statistics
National Vital Statistics System
July 1, 2000-July 1, 2009 Revised bridged-race intercensal population estimates
(retrieved from https://www.cdc.gov/nchs/nvss/bridged_race/data_documentation.htm)

RefCode 23
U.S. Department of Commerce Bureau of the Census
Program: Decennial Census – Census United States
Data Set: Census 2010 Summary File 1
Table: PCT012 Sex by age [Total population]
(retrieved from https://factfinder.census.gov)

RefCode 130
Center for Disease Control and Prevention
National Center for Health Statistics
National Vital Statistics System
Vintage 2018 bridged-race postcensal population estimates

RefCode 200
Center for Health Statistics, United States. Vital Statistics of the United States, Volume
(retrieved from https://www.cdc.gov/nchs/products/vsus/vsus_1939_1964.htm on 14
August 2013)

RefCode 210
Center for Health Statistics, United States. Vital Statistics of the United States, Volume
August 2013)

RefCode 220
(retrieved from https://www.cdc.gov/nchs/data_access/vitalstatsonline.htm on 22 April
2015)
RefCode 230
United States Department of Health and Human Services (US DHHS),
Centers for Disease Control and Prevention (CDC),
National Center for Health Statistics (NCHS),
Division of Vital Statistics (DVS),
Natality public-use data on CDC WONDER Online Database,
for years 2003-2006 available March 2009

RefCode 240
United States Department of Health and Human Services (US DHHS),
Centers for Disease Control and Prevention (CDC),
National Center for Health Statistics (NCHS),
Division of Vital Statistics (DVS),
Natality public-use data on CDC WONDER Online Database,
for years 2007-2018 available February 2018
(retrieved from https://wonder.cdc.gov/natality-current.html on 1-July-2019)